In order to examine this code, first of all remember something said at the beginning of this tutorial: a C++ program always begins its execution by the main function. So we will begin there. We can see how the main function begins by declaring the variable z of type int. Right after that, we see a call to a function called addition. Paying attention we will be able to see the similarity between the structure of the call to the function and the declaration of the function itself some code lines above: The parameters and arguments have a clear correspondence. Within the main function we called to addition passing two values: 5 and 3, that correspond to the int aand int b parameters declared for function addition. At the point at which the function is called from within main, the control is lost by main and passed to function addition. The value of both arguments passed in the call (5and 3) are copied to the local variables int a and int b within the function. Function addition declares another local variable (int r), and by means of the expression r=a+b, it assigns to r the result of a plus b. Because the actual parameters passed for a and b are 5 and 3 respectively, the result is 8. The following line of code:
return (r);
finalizes function addition, and returns the control back to the function that called it in the first place (in this case, main). At this moment the program follows it regular course from the same point at which it was interrupted by the call to addition. But additionally, because the return statement in function addition specified a value: the content of variable r (return (r);), which at that moment had a value of 8. This value becomes the value of evaluating the function call. So being the value returned by a function the value given to the function call itself when it is evaluated, the variable z will be set to the value returned by addition (5, 3), that is 8. To explain it another way, you can imagine that the call to a function (addition (5,3)) is literally replaced by the value it returns (8). The following line of code in main is:
cout << "The result is " <<>
That, as you may already expect, produces the printing of the result on the screen.

Scope of variables

The scope of variables declared within a function or any other inner block is only their own function or their own block and cannot be used outside of them. For example, in the previous example it would have been impossible to use the variables a, b or r directly in function main since they were variables local to function addition. Also, it would have been impossible to use the variable z directly within function addition, since this was a variable local to the function main. Therefore, the scope of local variables is limited to the same block level in which they are declared. Nevertheless, we also have the possibility to declare global variables; These are visible from any point of the code, inside and outside all functions. In order to declare global variables you simply have to declare the variable outside any function or block; that means, directly in the body of the program.
Site hosted by Angelfire.com: Build your free website today!